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Abstract

The present paper reviews the graphical and nongraphical methods for estimating

multivariate normality. Prior to exploring this methodology, a foundation will first be established

by presenting ways to assess univariate and bivariate normality. A data set of three variables used

by Stevens (1986) is analyzed using Q-Q plots, stem and leaf plots, histograms, skewness and

kurtosis coefficients, the Shapiro-Wilk statistic, and bivariate and multivariate scatterplots.

Multivariate normality is explored in terms of calculating Mahalanobis distances and plotting them

on a scattergram against derived chi-square values using Fortran and SPSS programs developed

by Thompson (1990, 1997).
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Ways to Evaluate the Assumption of Multivariate Normality

Multivariate analyses are vital to the social sciences in the exploration of a dynamic

environment. Fish (1988) and Thompson (1994) stated that use of multivariate methods are vital

for two reasons. First, multivariate methods avoid the inflation of experimentwise Type I error

rates that occur when univariate methods are employed in a single study to test multiple

hypotheses that are at least partially uncorrelated. Secondly, and more importantly, multivariate

methods analytically honor a substantive reality in which most effects have multiple causes and

multiple consequences.

The trend toward utilization of multivariate methods has increased over the past two

decades, as noted by Emmons, Stallings, and Layne (1990) and Grimm and Yarnold (1995). The

former group of researchers studied 16 years of research reports in three journals and found that

the multivariate characteristic of the social science research environment with its

many confounding or intervening variables has been addressed through the trend

toward increased use of multivariate analysis of variance and covariance, multiple

regression, and multiple correlation. (p. 14)

The latter group of researchers noted that, "In the last 20 years, the use of multivariate statistics

has become commonplace. Indeed, it is difficult to find empirically based articles that do not use

one or another multivariate analysis" (p. vii).

Because these methods are gaining in popularity, it is important to understand the

assumptions underlying multivariate statistical techniques, one of which is multivariate normality.

It is imperative to remember that multivariate normality is basic to the statistical significance

inference procedure of multivariate analysis (Marascuilo& Levin, 1983). The purpose of the
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present paper is to review the graphical and nongraphical methods for estimating multivariate
normality. Prior to exploring this methodology, a foundation will first be established by
presenting ways to assess univariate and bivariate normality.

Normality

Parametric tests require the estimation of a least one population parameter from the
sample statistics. To make the estimation, certain assumptions must be made, the most important
of which is that the variable measured in the sample is normally distributed in the population to
which it is to be generalized (Munro & Page, 1993). It is important to remember that the normal
curve is a mathematical model that depends upon the mean and the standard deviation, in the
restrictive sense that the mean and the standard deviation are used to calculate skewness and
kurtosis. Skewness and kurtosis quantitatively evaluate the normality of the distribution, with
skewness referring to the asymmetry of the curve and kurtosis referring to the tallness or flatness
of the curve (Bump, 1991).

Properties of the Normal Curve. The properties of the normal curve include the
following:

1. The curve is symmetrical. The mean, median, and mode

coincide.

2. The maximum ordinate of the curve occurs at the mean, that is,

where z = 0 in a normal z score distribution, and the unit normal

curve is equal to .3989.

3. The curve is asymptotic. It approaches but does not meet the

horizontal axis and extends from minus infinity to plus infinity.
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4. The points of inflection of the curve occur at points plus or

minus one standard deviation unit above and below the mean. Thus

the curve changes from convex to concave in relation to the

horizonal axis at these points.

5. Roughly 68% of the area of the curve falls within the limits plus

or minus one standard deviation unit from the mean.

6. In the unit normal curve the limits z = +1- 1,96 include 95% and

the limits z = +1- 2.58 include 99% of the total area of the curve,

5% and 1% of the area, respectively, falling beyond these limits.

(Ferguson, 1976, p. 98)

Univariate Normality

Before proceeding to a discussion of multivariate normality, it is important to review
univariate and bivariate normality because "normality on each of the variable is a necessary but
not sufficient condition for multivariate normality to hold" (Stevens, 1996, p. 243). Analysis of
variance (ANOVA) tests whether between group means differ and has as one of its assumptions
that the dependent variable should be normally distributed. ANOVA is robust with respect to the
normality assumption and skewness has very little effect (generally only a few hundredths) on
level of significance or power if the design is "balanced" (i.e., equal number of observations per
cell). Platykurtosis (flattened distribution relative to the normal distribution) attenuates power
(Stevens, 1996).

Univariate tests for assessing normality may be graphical and nongraphical. To graphically
determine univariate normality, a Q-Q Plot (quantile-versus-quantile), compares observed values
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with expected normal distribution values. In these plots, scores are ranked and sorted. An

expected normal value is computed and compared with the actual normal values for each case.

The expected normal value is the position a case with that rank holds in a normal distribution; the

normal value is the position it holds in the actual distribution. If the actual distribution is normal,

the points for the cases fall along the diagonal running from lower left to upper right, with some

minor deviations secondary to random processes (Tabachnick & Fidel!, 1989).

Figure 1 graphically displays a variable with one hundred responses in increasing order of

magnitude plotted against expected normal distribution values. Normality is tenable in this

instance because the plot resembles a straight line. Figure 2 is an arrangement of 50 responses for

a variable in increasing order of magnitude plotted against expected normal distribution values.

Normality is not tenable in this instance because the plot does not resemble a straight line. Only

two points are plotted when n = 50. In this instance, other pictorial representations assist in the

determination of normality.

Q-Q plots are available using the graphs menu on SPSS (Appendix A). SPSS also

provides stem and leaf plots (e.g., Figure 3) and histograms (e. g., Figure 4) for visualization of

normality. The normal curve, as presented in basic statistical texts, is more readily visualized in

stem and leaf plots and histograms. Figures 3 and 4 demonstrate the classic bell curve using the

one hundred responses denoted in Figure 1. Figures 5 and 6 fail to demonstrate normality using

the 50 responses denoted in figure 2. It is important to remember that with small or moderate

sample sizes, it may be difficult to tell whether graphic non-normality is real or apparent

(Gnanadesikan, 1977; Neter, Kutner, Nachtsheim, & Wasserman, 1996; Norusis, 1995).

The most powerful non-graphic tests for determining univariate normality includes the

7
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skewness and kurtosis coefficients and the Shapiro-Wilk test (Stevens, 1996). In SPSS, this

information can be obtained with the Explore procedure (Appendix A). Note that SPSS will print

the Shapiro-Wilk for samples with less than 50 observations and the K-S Lilliefors statistic for

samples with greater than 50 observations. Table 1 shows the SPSS Descriptives printout for

data with 100 responses and Table 2 shows the SPSS Descriptives printout for data with 26

responses.

Fisher's Measure of Skewness. This statistic is based on deviations from the mean to the

third power. A symmetrical curve will result in a value of O. If the skewness value is positive,

then the curve is skewed to the right, and vice versa. Dividing the measure of skewness by the

standard error for skewness results in a number that is interpreted in terms of the normal curve.

Values above +1.96 or below -1.96 are statistically significant because 95% of the scores in the

normal distribution fall between +1.96 and -1.96 standard deviations from the mean. Because this

statistic is based on deviations to the third power, it is very sensitive to extreme values (Munro &

Page, 1993). The coefficients in Tables 1 and 2 are not statistically significant.

Fisher's Measure of Kurtosis. This statistic indicates whether a distribution is too flat or

too peaked, being based on deviations of the mean to the fourth power. If the kurtosis value is

positive, the distribution is too peaked to be normal; if the kurtosis value is negative, the curve is

too flat to be normal. The kurtosis statistic is divided by the standard error for kurtosis and the

values compared to the +1- 1.96 range used to determine skewness (Munro & Page, 1993). The

coefficients in Tables 1 and 2 are not statistically significant.

Shapiro-Wilk Test. Shapiro and Wilk developed a test for normality that is sensitive to a

wide variety of alternatives to the normal. Small values of W correspond to departure from
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normality. If observed significance levels are reasonably large (greater than 0.1), normality is not

an unreasonable assumption (Gnanadesikan, 1977). The Shapiro-Wilk statistic in Table 2 is

sufficiently large so that the assumption of normality is tenable.

Bivariate Normality

The normal correlation model for the case of two variables is based on the bivariate

normal distribution. Consider the vocabulary (X1) scores and math (X,) scores for a group of

students from Table 3. The student's score combinations form a scatter diagram (Figure 7). The

centroid, (X1 = 17.6. X, = 16.1), is the center of the 10 cases (Tatsuoka, 1971b). If there was a

large population of students, a clustering of points would be expected around the centroid with a

gradual thinning as the distance away from the centroid continues. To depict this in a manner

analogous to the normal curve, a third dimension, frequency, is needed perpendicular to the (X1,

X,) plane.

The surface will resemble a bell shaped "mound" similar to Figures 8, 9, 10, and 11, with

the apex vertically above the centroid (Karson, 1982, Neter, Kutner, Nachtsheim, & Wasserman,

1996, Tatasuoka, 1971a, 1971b). For every pair of values (X1, X2), the density f (X1, X2)

represents the height of the surface at that very point. The surface is continuous, with probability

corresponding to the volume under the surface (Neter, Kutner, Nachtsheim, & Wasserman,

1996). Though this conveys a general impression, it is customary to represent the bivariate curve

with a series of contour lines. These contour lines (Figure 12) are a series of concentric ellipses

and their common center is the centroid. The statistical implication of the volume under the

bivariate normal surface of a given elliptical region is parallel to the meaning of the area under the

normal curve over a given interval. It represents the probability that a random bivariate
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observation, when plotted as a point on the (X1, X,) plane, will lie within the elliptical region. For

example, in Figure 12, an observation that falls in the small ellipse has an 80% chance of being

included in the sample because it is close to the mean, whereas an observation that falls in the

large ellipse has a 20% chance of being included in the sample because it is far from the mean

(Morrison, 1983). The contour is a cross section of the surface made by a plane parallel to the

(X1, X,) plane. Thinking must still be three dimensional because the bell shaped "mound" is

being sliced into sections, with the top part of the "mound" being the top of the normal curve and

the bottom part of the "mound" being the bottom of the normal curve. Thus, bivariate normality

is checked by graphing X1 and X, and noting the scatter of the variables around the centroid. The

pattern should be elliptical (Karson, 1982, Neter, Kutner, Nachtsheim, & Wasserman, 1996,

Tatasuoka, 1971a, 1971b).

Multivariate Normality

Multivariate normality is assessed to verify the reasonableness of assuming normality for a

given body of multiresponse questions. As can be imagined, there are many possibilities for

departure from normality with multiresponse data. A preliminary step in evaluating the normality

of multiresponse data is to evaluate univariate normality for each of the variables. In the printout

of the MULTINOR Program written by Thompson (1990) (Appendix B), univariate normality for

each of the three variables was checked using Q-Q Plots, stem and leaf plots, histograms, the

Shapiro-Wilk's statistic, and skewness and kurtosis coefficients (Figures 13 through 21; Tables 4

and 5). The Q-Q plots of the three variables (Figures 13, 14, and 15) show that normality is

tenable for variable one because the plot resembles a straight line but normality is not as tenable

for variables two and three because the plots do not resemble a straight line. The stem and leaf
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plot and histogram of variable one (Figures 16 and Figure 19) reveal a somewhat normal

distribution while the stem and leaf plots and histograms of variables two (Figures 17 and 20) and

three (Figures 18 and 21) reveal negatively skewed and trimodal distributions respectively. The

descriptives data (Tables 4 and 5) reveal skewness and kurtosis statistics that are not statistically

significant for all three variables and Shapiro-Wilk statistics that are significantly large for

variables one and three to make the normality assumption not unreasonable. Univariate normality

cannot be assumed for these variables. Remember that univariate normality was discussed

because "normality on each of the variables separately is a necessary, but not sufficient, condition

for multivariate normality to hold" (Stevens, 1996, p. 243).

Next, for normality to hold, any linear combinations of the variables must be normally

distributed and all subsets of the set of variables must have multivariate normal distributions. This

condition implies that all pairs of variables must be bivariate normal (Stevens, 1996). Bivariate

normality was checked for in the MULTINOR data (Appendix B) by requesting scatterplots and

noting elliptical patterns for the three possible combinations of the variables (Figures 22 through

24). A cursory view of the patterns around the centroids does not reveal a clear elliptical pattern.

Measuring and connecting the variables to form elliptical patterns based on percentages (80%,

60%, 40%, and 20%) of variables around the centroid assists in visualizing the ellipses.

The data can finally be checked for multivariate normality by calculating the Mahalanobis

distance (D2) for each subject (Thompson, 1990). The Mahalanobis distance is the distance of a

case from the centroid of the remaining cases where the centroid is the point defined by the means

of all the variables (Tabachnick & Fidell, 1989). Basically, it indicates how far a case is from the

centroid of all cases for the predictor variables. A large distance indicates an observation that is
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an outlier for the predictors. The Mahalanobis distance is the accepted measure of distance

between two (quantitative) multivariate populations and is independent of sample size

(Krzanowski, 1988; Stevens, 1996).

In the MULTINOR printout, (Appendix B) the D2 can be calculated for each subject using

the formula D21 = ()(i - x)' S-1 (xi - x) where xi is the vector of data for case i and x is the vector of

means (centroid) for the predictors. Using the data for subject eight from the MULTINOR

printout, the equation for subject eight would be as follows (numbers are rounded to the nearest

tenth):

D28= (.3, -0.9, 0.5) (0.57 -0.12 -0.3 0.69408

-0.12 0.33 -0.26

\-0.37 -0.26 0.92

1 X3 3X3 3x!
T

Based on the formula, the matrices are 1 x 3, 3 x 3, and 3 x 1. To determine the numbers for the

equation, first subtract the mean of each variable from the scores of the selected subject to form

the 1 x 3 and 3 x 1 matrices and use the inverted variance/covariance matrix from the printout for

S. The results will match the Mahalanobis distances given on the second page of the

MULTINOR printout. After the distances are calculated, the values are sorted in ascending order

and paired with a derived chi-square value [(j - 0.5)/n = percentile for the chi-square]. A table or

computer program is required to determine p values because each chi square is not at the standard

0.01 or 0.05 levels (see the second page of the MULTINOR printout). The pairs are then plotted

in a scattergram (see the third page of the MULTINOR printout). If n (number of subjects in the

sample) - p (number of variables) is greater than 25, the plot should resemble a straight line.

12
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Conceptually, it is important to remember that the inverted variance/covariance matrix serves as a

constant in the equation. Just by looking at the 1 x 3 and 3 x 1 matrices and their relation to the

centroid, deciding where a subject will fall on a graph is possible. Order inferred distance can be

estimated without the inverted variance/covariance matrix.

Looking at the MULTINOR scatterplot (Appendix B), each subject can be identified.

Subject 8 is the first * in the lower left hand corner because the D2/chi square value is the closest

to the centroid; subject 17 is the * in the far upper right hand corner because the D2/chi square

value is fartherest from the centroid (0/0). Again, distance indicates how far the case is from the

centroid and if the plot resembles a straight line, normality is more tenable. The Mahalanobis

distance represents the coordinate for the three means. In a multivariate normal curve, the cases

will cluster around the centroid and taper off as the distance increases.

Thompson (1997) wrote an SPSS program to test multivariate normality graphically

(Appendix C). Note the commands on the first page of the program. Page two of the program

lists all of the variables for the data set and their means. On page three of the program, the

Mahalanobis statistics are listed with the residual statistics. Page four details the Mahalanobis

Distances for each subject in ascending order (subject number six is first; subject number three is

last). The distances are paired with Chi Square values and graphed (page six).

Homogeneity of Variance-Covariance Matrices

An indirect way to assess multivariate normality is to test the assumption that the

variance-covariance matrices within each cell of the design are sampled from the same population

variance-covariance matrix. If the matrices are sampled from the same population, they can

reasonably be pooled to create a single estimate of error. Evaluation of homogeneity of variance-
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covariance matrices in especially important when sample sizes are not equal.

SPSS MANOVA conducts a Box's M test to determine homogeneity of the variance-

covariance matrices. The null hypothesis for the Box's M test is that the variance-covariance

matrices are not statistically significant, therefore a p value of greater that 0.05 is desired. If the

assumption for multivariate generalization of homogeneity of variance is met, then it is likely that

the assumption for multivariate normality is also met. This paper will not discuss in depth the

relationship between normality and homogeneity and refers the reader to Tabachnick and Fidell

(1989) for further exploration.

Conclusion

Although multivariate normality is not required to estimate most multivariate parameters

(e.g., function coefficients, structure coefficients), even in these cases the distributions of the

variables must be reasonably comparable. To test for multivariate normality, univariate and

bivariate assumptions should be met in addition to calculating Mahalanobis distances and plotting

them against a derived chi-square value to note their linearity. If the assumption for multivariate

normality is met solely through calculation of Mahalanobis distances and graphically noting

linearity, then the assumptions for univariate and bivariate normality are met. However, if data

are determined to be univariate and bivariate normal, it may not be assumed to be multivariate

normal. Computer programs are available to ease calculations to determine normality, including

Thompson's Multinor (1990, 1997) program.
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Appendix A

SPSS Commands

PPLOT
/VARIABLES=one
/NOLOG
/NOSTANDARDIZE
/TYPE=0-0
/FRACTION=BLOM
/TIES=MEAN
/DIST=NORMAL.

GRAPH
/H ISTOGRAM =one.

EXAMINE
VARIABLES=one two three
/PLOT BOXPLOT STEMLEAF HISTOGRAM NPPLOT
/COMPARE GROUP
/STATISTICS DESCRIPTIVES
/CINTERVAL 95

/MISSING LISTWISE
/NOTOTAL.

GRAPH
/SCATTERPLOT(BIVAR)=one WITH three
/MISS ING=LISTWISE.

PLOT
NERTICAL='VARIABLE ONE' REFERENCE (6.4)

/1-10RIZONTAL=WARIABLE THREE' REFERENCE (6.7)

/PLOT=ONE WITH THREE.
GRAPH

/SCATTERPLOT(BIVAR)=one WITH two
/MISS ING=LISTWISE.

PLOT
NERTICAL='VARIABLE ONE' REFERENCE (.6.4)

MORIZONTAL='VARIABLE TWO' REFERENCE (6.9)

/PLOT=ONE WITH TWO.
GRAPH

/SCATTERPLOT(BIVAR)=two WITH three
/MISS ING=LISTWISE.

PLOT
NERTICAL= 'VARIABLE TWO' REFERENCE (6.9)

MORIZONTAL=WARIABLE THREE' REFERENCE (6.7)

/PLOT=TWO WITH THREE

18
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Appendix C

multino2.aer 10/11/97

multinor.sps
SET BLANKS=SYSMIS UNDEFINED=WARN printback=list.
TITLE 'MULTINOR.SPS tests multivar normality graphically * * * *'.

COMMENT
COMMENT The original MULTINOR computer program was presented,

COMMENT with examples, in:
COMMENT Thompson, B. (1990). MULTINOR: A FORTRAN program that

COMMENT assists in evaluating multivariate normality.
COMMENT Educational and Psychological Measurement_, 50,
COMMENT 845-848.
COMMENT
COMMENT The logic and the data source for the example are from:

COMMENT Stevens, J. (1986). _Applied multivariate statistics

COMMENT for the social sciences. Hillsdale, NJ: Erlbaum.

COMMENT (pp. 207-212)
COMMENT
COMMENT Here there are 3 variables for which multivariate
COMMENT normality is being confirmed.
DATA LIST

FILE=°c:\spsswin\multinor.dat' FIXED RECORDS=1 TABLE
/1 xl 1-3 (1) x2 5-7 (1) x3 9-11 (1).

list variables=all/cases=9999/format=numbered .
COMMENT 'y' is a variable automatically created by the program, and

COMMENT does not have to modified for different data sets.
compute y=$casenum .
print formats y(F5) .

regression variables=y xl to x3/
descriptive=mean stddev carr/
dependent=y/enter xl to x3/
save=mahal(mahal) .

sort cases by mahal(a)
execute .
list variables=x1 to x3 mahal/cases=9999/format=numbered .
COMMENT In the next TWO lines, for a given data set put the actual

COMMENT in place of the number '12' used for the example data set.

loop #i =1 to 12 .

COMMENT In the next line, change '3' to whatever is the number

COMMENT of variables.
COMMENT The p critical value of chi square for a given case

COMMENT is set as [the case number (after sorting) - .5] / the

COMMENT sample size].
compute p=($casenum - .5) / 12.
compute chisq=idf.chisq(p,3) .

end loop .
print formats p chisq (F8.5) .

list variables=y p mahal chisq/cases=9999/format=numbered
plot

vertical='chi square'/
horizontal='Mahalabis distance'/
plot=chisq with mahal .

multinor.dat
2.4 2.1 2.4
3.5 1.8 3.9
6.7 3.6 5.9
5.3 3.3 6.1
5.2 4.1 6.4
3.2 2.7 4.0
4.5 4.9 5.7
3.9 4.7 4.7
4.0 3.6 2.9
5.7 5.5 6.2
2.4 2.9 3.2
2.7 2.6 4.1
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multinor.lst

- > SET BLANKS=SYSMIS UNDEFINED=WARN printback=list.

- > TITLE 'MULTINOR.SPS testa multivar normality graphically * * * *'.

-> COMMENT
> COMMENT The original MULTINOR computer program was presented,

- > COMMENT with examples, in:
- > COMMENT Thompson, B. (1990). MULTINOR: A FORTRAN program that
- > COMMENT assists in evaluating multivariate normality.
-> COMMENT Educational and Psychological Measurement_, 50,
- > COMMENT 845-848.
-> COMMENT
- > COMMENT The logic and the data source for the example are from:

- > COMMENT Stevens, J. (1986). Applied multivariate statistics
- > COMMENT for the social sciences. Hillsdale, NJ: Erlbaum.

- > COMMENT (pp. 207-212)
- > COMMENT

- > COMMENT Here there are 3 variables for which multivariate
- > COMMENT normality is being confirmed.

- > DATA LIST
- > FILE='c:\spsswin\multinor.dat' FIXED RECORDS=1 TABLE
- > /1 xl 1-3 (1) x2 5-7 (1) x3 9-11 (1).

- > list variables=all/cases=9999/format=numbered .

X1 X2 X3
1 2.4
2 3.5
3 6.7
4 5.3
5 5.2
6 3.2
7 4.5
8 3.9
9 4.0

10 5.7
11 2.4
12 2.7

2.1 2.4
1.8 3.9
3.6 5.9
3.3 6.1
4.1 6.4
2.7 4.0
4.9 5.7
4.7 4.7
3.6 2.9
5.5 6.2
2.9 3.2
2.6 4.1

Number of cases read: 12 Number of cases listed: 12

- > COMMENT 'y' is a variable automatically created by the program, and

- > COMMENT does not have to modified for different data sets.

- > compute y=$casenum .

- > print formats y(F5) .

- > regression variables=y xl to x3/
-> descriptive=mean stddev corr/
-> dependent=y/enter xl to x3/
-> save=mahal(mahal) .

* * * * MULTIPLE REGRESSION
Listwise Deletion of Missing Data

Mean Std Dev Label
Y 3.606
X1 4.125 1.384
X2 3.483 1.147
X3 1.406

2



N of Cases = 12

Correlation:
Y X1 X2

Y 1.000 -.207 .376

X1 -.207 1.000 .606

X2 .376 .606 1.000

X3 -.044 .845 .656

X3
-.044
.845
.656

1.000
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* * * * MULTIPLE REGRESSION * * * *

Equation Number 1 Dependent Variable..
Descriptive Statistics are printed on Page 83

Block Number 1. Method: Enter X1

Variable(s) Entered on Step Number
1.. X3

-k 10'
2.. X2
3.. Xl

Multiple R .66417
R Square .44112-'
Adjusted R Square .23154
Standard Error 3.16069

Analysis of Variance
DF

Regression 3

Residual 8

F = 2.10480

Variable

Sum of Squares
63.08053
79.91947

Signif F = .1780

Variables in the Equation

B SE B Beta

Xl -1.909097 1.296480 -.733029

X2 2.445453 1.110369 .778083

X3 .165296 1.345478 .064454

(Constant) 5.092203 3.454771

X3

Mean Square
21.02684
9.98993

T Sig T

-1.473 .1791
2.202 .0588
.123 .9053

1.474 .1787

End Block Number 1 All requested variables entered.

* * * * MULTIPLE REGRESSION * * *

Equation Number 1 Dependent Variable.. Y

Residuals Statistics:

Min Max Mean Std Dev N

*PRED 2.0801 9.9172 6.5000 2.3947 12

*ZPRED -1.8457 1.4270 .0000 1.0000 12

*SEPRED 1.2118 2.4798 1.7932 .3534 12

*ADJPRED .6074 10.6661 6.2406 2.9511 12

*RESID -5.0425 5.0265 .0000 2.6954 12

*ZRESID -1.5954 1.5903 .0000 .8528 12

*SRESID -1.9334 1.8781 .0291 1.0420 12

*DRESID -7.4057 7.0104 .2594 4.0901 12

*SDRESID -2.4778 2.3496 .0287 1.2152 12

*NASAL .7004 5.8543 2.7500 1.5070 12

*COOK D .0000 .4543 .1364 .1713 12

*LEVER .0637 .5322 .2500 .1370 12

Total Cases = 12

3

33
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From Equation 1: 1 new variables have been created.

Name
- - - -

MAHAL

Contents

Mahalanobis' Distance

-> sort cases by mahal(a) .

-> execute .

-> list variables =xl to x3 mahal cases=9999/format=numbered .

X1 X2 X3
1 3.2 2.7 4.0
2 2.4 2.9 3.2
3 5.2 4.1 6.4
4 3.9 4.7 4.7
5 2.7 2.6 4.1
6 4.5 4.9 5.7
7 5.3 3.3 6.1
8 3.5 1.8 3.9
9 2.4 2.1 2.4

10 5.7 5.5 6.2
11 4.0 3.6 2.9
12 6.7 3.6 5.9

Number of cases read: 12

MAHAL
.700385

1.65042
1.98854
2.17303
2.19634
2.22174
2.37118
2.53196
2.59346
3.12622
5.59246
5.85428 n

er of cases listed: 12

-> COMMENT In the next TWO lines, for a given data set put the actual

-> COMMENT in place of the number '12' used for the example data set.

-> loop #i =1 to 12 .

-> COMMENT In the next line, change '3' to whatever is the number

-> COMMENT of variables.
-> COMMENT The p critical value of chi square for a given case

-> COMMENT is set as [the case number (after sorting) - .5] / the

-> COMMENT sample size].

-> compute p= ($casenum - .5) / 12.

-> compute chisq=idf.chisq(p,3) .

-> end loop .

-> print formats p chisq (F8.5)

-> list variables=y p mah chisq/cases=9999/format=numbered
Y P

1 6 .04167
2 11 .12500
3 5 .20833
4 8 .29167
5 12 .37500
6 7 .45833
7 4 .54167
8 2 .62500
9 1 .70833

10 10 .79167
11 9 .87500
12 3 .95833

MAHAL CHISQ
.70038 .30897

1.65042 .69236
1.98854 1.03962
2.17303 1.38807
2.19634 1.75398
2.22174 2.15099
2.37118 2.59519
2.53196 3.10983
2.59346 3.73392
3.12622 4.54475
5.59246 5.73941
5.85428 8.22056

Number of cases read: -12 Number of cases listed: 12

4



-> plot
- > vertical='chi square'/
- > horizontal='Mahalabis distance'/
- > plot=chisq with mahal .

Hi-Res Chart 0 6:Plot of chisq with mahal

5

3Uo
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Plot of CHISQ with MAHAL
10

8-

6 -

4-

0

0

0

Mahalabis distance

0

0

0

0

3

0

6
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Table 1

SPSS Descriptives Printout for a Variable with 100 Responses Demonstrating Normality

X

Valid cases:

Mean .0000

Median .0000

5% Trim .0000

95% CI for Mean (-.

K-S (Lilliefors)

100.0 Missing cases: .0 Percent missing: .0

Std Err .1005 Min -2.6000 Skewness

Variance 1.0099 Max 2.6000 S E Skew

Std Dev 1.0049 Range 5.2000 Kurtosis

1994, .1994) IQR 1.4000 S E Kurt

Statistic df Significance

.0253 100 > .2000

.0000

.2414

-.0900

.4783
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Table 2

SPSS Descriptives Printout for a Variable with 26 Responses Failing to Demonstrate Normality

ONE

Valid cases: 26.0 Missing cases:

Mean

Median

5% Trim

6.4038 Std Err .4171 Min
6.0500 Variance 4.5228 Max
6.2791 Std Dev 2.1267 Range

95% CI for Mean (5.5449, 7.2628) IQR

Shapiro-Wilks

K-S (Lilliefors)

.0 Percent missing: .0

2.9000 Skewness

12.5000 S E Skew

9.6000 Kurtosis

2.8250 S E Kurt

Statistic df Significance

.9424 26

.1151 26

.2169

> .2000

.9959

.4556

1.6858

.8865
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Table 3

Vocabulary and Math Scores from 10 students

Pupil Number Vocabulary Test (X1) Math Test (X2)

1 19 15

2 20 18

3 17 18

4 16 12

5 19 16

6 17 16

7 18 13

8 17 20

9 15 17

10 18 16

Mean 17.6 16.1

3E
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Table 4

SPSS Descriptives Printout forVariables One, Two, and Three of Multinor data

Statistic Std. Error

ONE Mean 8.4038 .4171

95% Confidence Lower Bound 5.5449
Interval for Mean

Upper Bound 7.2628

5% Trimmed Mean
6.2791

Median 8.0500

Variance 4.523

Std. Deviation 2.1267

Minimum 2.90

Maximum 12.50

Range 9.60

Interquartile Range
2.8250

Skewness .996 .456

Kurtosis 1.686 .887

TWO Mean 6.8692 .5339

95% Confidence Lower Bound 5.7695
Interval for Mean Upper Bound 7.9689

5% Trimmed Mean
6.8474

Median 7.1000

Variance 7.413

Std. Deviation 2.7226

Minimum 3.00

Maximum 11.20

Range 8.20

Interquarlile Range
5.6750

Skewness .069 .458

Kurtosis -1.380 .887

THREE Mean 8.7154 .3568

Lower Bound 5.980595% Confidence
Interval for Mean

Upper Bound 7.4502

5% Trimmed Mean
6.6440

Median 6.5500

Variance 3.310

Std. Deviation 1.8194

Minimum 4.20

Maximum 11.00

Range 6.80

Interquartile Range
2.9750

Skewness .344 .458

Kurtosis -.506 .887

BEST COPY AVAILABLE
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Table 5

Tests of Normality for Variables One, Two, and Three

Koimogorov-Smirnov" Shapiro-Wilk

Statistic dr Sig. Statistic df Sig.

ONE .115 26 .200' .942 26 .217

TWO .122 26 .200' .925 26 .069

THREE .094 26 .200 .950 26 .310

This Is lower bound al th VW significance.

U. Melon SignIfb:anoe Comxton

BEST COPY AVAILABLE
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Figure Captions

Figure 1. Q-Q plot of 100 responses to a variable demonstrating normality.

Figure 2. Q-Q plots of 50 responses to a variable failing to demonstrate normality.

Figure 3. Stem and leaf plot of 100 responses to a variable demonstrating normality.

Figure 4. Histogram of 100 responses to a variable demonstrating normality.

Figure 5. Stem and leaf plots of 50 responses to a variable failing to demonstrate normality.

Figure 6. Histograms of 50 responses to a variable failing to demonstrate normality.

Figure 7. Scattergram of vocabulary and math scores.

Note. From Selected Topics in Advanced Statistics: An Elementary Approach (p.15), by M.

Tatsuoka, 1971, Champaign, Illinois: The Institute for Personality and Ability Testing. Copyright

1971 by the Institute for Personality and Ability Testing.

Figure 8. Graphical representation of a bivariate normal distribution (1)

Note. From Selected Topics in Advanced Statistics: An Elementary Approach (p.16), by M.

Tatsuoka, 1971, Champaign, Illinois: The Institute for Personality and Ability Testing. Copyright

1971 by the Institute for Personality and Ability Testing.

Figure 9. Graphical representation of a bivariate normal distribution (2)

Note. From Multivariate Analysis: Techniques for Educational Psychological Research (p. 64),

by M. Tatsuoka, 1971, New York: John Wiley & Sons. Copyright 1971 by John Wiley & Sons

Inc.

Figure 10. Graphical representation of a bivariate normal distribution (3)

Note. From Multivariate Statistical Methods: An Introduction (p. 52), by M. Karson, 1982,

Ames, Iowa: The Iowa State University Press. Copyright 1982 by The Iowa State University
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Press.

Figure 11. Graphical representation of a bivariate normal distribution (4)

Note. From Applied Linear Statistical Models (p. 633), by J. Neter, M. Kutner, C. Nachtsheim,

and W. Wasserman, Chicago: Irwin. Copyright 1996 by Times Mirror Higher Education Group,

Inc.

Figure 12. Contour diagram for a bivariate normal surface

Note. From Applied Linear Statistical Methods (p. 26), by D. Morrison, 1983, Englewood Cliffs,

New Jersey: Prentice-Hall, Inc. Copyright 1983 by Prentice-Hall, Inc.

Figure 13. Q-Q plot of variable one of Multinor data

Figure 14. Q-Q plot of variable two of Multinor data

Figure 15. Q-Q plot of variable three of Multinor data

Figure 16. Stem and leaf plot of variable one of Mulitinor data

Figure 17. Stem and leaf plot of variable two of Mulitinor data

Figure 18. Stem and leaf plot of variable three of Mulitinor data

Figure 19. Histogram of variable one of Multinor data

Figure 20. Histogram of variable two of Multinor data

Figure 21. Histogram of variable three of Multinor data

Figure 22. Scattergram of variables one and three of Multinor data

Figure 23. Scattergram of variables one and two of Multinor data

Figure 24. Scattergram of variables two and three of Multinor data
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Normal Q-Q Plot of VAR00001
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Frequency Stem & Leaf

1.00 -2 . 6

2.00 -2 * 02

4.00 -1 . 5678

10.00 -1 * 0011223344

15.00 -0 . 555666777888999

16.00 -0 * 1111222233334444

20.00 0 * 00001111222233334444

15.00 0 . 555666777888999

10.00 1 * 0011223344

4.00 1 . 5678

2.00 2 * 02

1.00 2 . 6

Stem width:

Each leaf:

1.00

1 case(s)



-2.50 -1.50

-2.00 -1.00

X

-.50

0.00

.50 1.50 2.50
1.00 2.00

Std. Dev = 1.00
Mean = 0.00

N = 100.00



VAR00001 Stem-and-Leaf Plot

Frequency Stem & Leaf

25.00 1 . 0000000000000000000000000
.00 1 .

.00 2 .

.00 2 .

.00 3 .

.00 3 .

.00 4 .

.00 4 .

25.00 5 . 0000000000000000000000000

Stem width:
Each leaf:

1.00
1 case(s)

VAR00002 Stem-and-Leaf Plot

Frequency Stem & Leaf

25.00 2 . 0000000000000000000000000
.00 2
.00 2
.00 2
.00 2

25.00 3 . 0000000000000000000000000

Stem width:
Each leaf:

1.00
1 case(s)
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Histogram
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Normal Q-Q Plot of ONE
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Normal Q-Q Plot of TWO
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Normal Q-Q Plot of THREE
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Frequency Stem & Leaf

1.00 2 9

1.00 3 . 3

5.00 4 26888

5.00 5 . 22678

5.00 6 . 01279

4.00 7 . 1267

3.00 8 . 136

.00 9 .

1.00 10 6

1.00 Extremes (12.5)

Stem width:

Each leaf:

1.00

1 case(s)
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Frequency Stem & Leaf

6.00 3 . 003778

2.00 4 . 16

3.00 5 . 378

1.00 6 . 0

5.00 7 . 11277

1.00 8 . 4

4.00 9 . 3777

3.00 10 . 369

1.00 11 . 2

Stem width: 1.00

Each leaf: 1 case(s)



Frequency Stem & Leaf

6.00 4 . 223379

3.00 5 . 345

6.00 6 . 222479

3.00 7 . 228

7.00 8 . 1147999

.00 9 .

.00 10 .

1.00 11 . 0

Stem width:

Each leaf:
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Variable One

ONE

10.0 11.0 12.0 13.0

Std. Dev = 2.13
Mean = 6.4

N = 26.00
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Variabie Three
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Std. Dev = 1.82
Mean = 6.72
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